Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37408229

RESUMO

The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.


Assuntos
Núcleo Celular , Processamento de Proteína Pós-Traducional , Animais , Transdução de Sinais/fisiologia , Transporte Proteico , Nutrientes , Mamíferos
2.
Sci Rep ; 12(1): 22129, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550357

RESUMO

Sialylation of cell surface glycans plays an essential role in cell-cell interaction and communication of cells with their microenvironment. Among the tools that have been developed for the study of sialylation in living cells, metabolic oligosaccharide engineering (MOE) exploits the biosynthetic pathway of sialic acid (Sia) to incorporate unnatural monosaccharides into nascent sialylatedglycoconjugates, followed by their detection by a bioorthogonal ligation of a molecular probe. Among bioorthogonal reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the only ligation where both reactive tags can be switched on the chemical reporter or on the probe, making this reaction very flexible and adaptable to various labeling strategies. Azide- and alkyne-modified ManNAc and Sia reporters have been widely used, but per-O-acetylated ManNAz (Ac4ManNAz) remains the most popular choice so far for tracking intracellular processing of sialoglycans and cell surface sialylation in various cells. Taking advantage of CuAAC, we compared the metabolic incorporation of ManNAl, ManNAz, SiaNAl, SiaNAz and Ac4ManNAz in the human colon cell lines CCD841CoN, HT29 and HCT116, and in the two gold standard cell lines, HEK293 and HeLa. Using complementary approaches, we showed marked differences in the efficiency of labeling of sialoglycoproteins between the different chemical reporters in a given cell line, and that switching the azide and alkyne bioorthogonal tags on the analogs highly impacted their metabolic incorporation in the human colon cell lines. Our results also indicated that ManNAz was the most promiscuous metabolized reporter to study sialylation in these cells.


Assuntos
Alcinos , Azidas , Humanos , Azidas/química , Alcinos/química , Células HEK293 , Hexosaminas , Ácido N-Acetilneuramínico/metabolismo , Química Click/métodos
3.
Front Oncol ; 12: 837373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280788

RESUMO

Topoisomerases, targets of inhibitors used in chemotherapy, induce DNA breaks accumulation leading to cancer cell death. A newly synthesized copper(II) indenoisoquinoline complex WN197 exhibits a cytotoxic effect below 0.5 µM, on MDA-MB-231, HeLa, and HT-29 cells. At low doses, WN197 inhibits topoisomerase I. At higher doses, it inhibits topoisomerase IIα and IIß, and displays DNA intercalation properties. DNA damage is detected by the presence of γH2AX. The activation of the DNA Damage Response (DDR) occurs through the phosphorylation of ATM/ATR, Chk1/2 kinases, and the increase of p21, a p53 target. WN197 induces a G2 phase arrest characterized by the unphosphorylated form of histone H3, the accumulation of phosphorylated Cdk1, and an association of Cdc25C with 14.3.3. Cancer cells die by autophagy with Beclin-1 accumulation, LC3-II formation, p62 degradation, and RAPTOR phosphorylation in the mTOR complex. Finally, WN197 by inhibiting topoisomerase I at low concentration with high efficiency is a promising agent for the development of future DNA damaging chemotherapies.

4.
Cancers (Basel) ; 13(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204801

RESUMO

O-GlcNAcylation is a cell glucose sensor. The addition of O-GlcNAc moieties to target protein is catalyzed by the O-Linked N-acetylglucosamine transferase (OGT). OGT is encoded by a single gene that yields differentially spliced OGT isoforms. One of them is targeted to mitochondria (mOGT). Although the impact of O-GlcNAcylation on cancer cells biology is well documented, mOGT's role remains poorly investigated. We performed studies using breast cancer cells with up-regulated mOGT or its catalytic inactive mutant to identify proteins specifically modified by mOGT. Proteomic approaches included isolation of mOGT protein partners and O-GlcNAcylated proteins from mitochondria-enriched fraction followed by their analysis by mass spectrometry. Moreover, we analyzed the impact of mOGT dysregulation on mitochondrial activity and cellular metabolism using a variety of biochemical assays. We found that mitochondrial OGT expression is glucose-dependent. Elevated mOGT expression affected the mitochondrial transmembrane potential and increased intramitochondrial ROS generation. Moreover, mOGT up-regulation caused a decrease in cellular ATP level. We identified many mitochondrial proteins as mOGT substrates. Most of these proteins are localized in the mitochondrial matrix and the inner mitochondrial membrane and participate in mitochondrial respiration, fatty acid metabolism, transport, translation, apoptosis, and mtDNA processes. Our findings suggest that mOGT interacts with and modifies many mitochondrial proteins, and its dysregulation affects cellular bioenergetics and mitochondria function.

6.
Cell Mol Life Sci ; 78(13): 5397-5413, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046694

RESUMO

Fatty acid synthase (FASN) participates in many fundamental biological processes, including energy storage and signal transduction, and is overexpressed in many cancer cells. We previously showed in a context of lipogenesis that FASN is protected from degradation by its interaction with O-GlcNAc transferase (OGT) in a nutrient-dependent manner. We and others also reported that OGT and O-GlcNAcylation up-regulate the PI3K/AKT/mTOR pathway that senses mitogenic signals and nutrient availability to drive cell cycle. Using biochemical and microscopy approaches, we show here that FASN co-localizes with OGT in the cytoplasm and, to a lesser extent, in the membrane fraction. This interaction occurs in a cell cycle-dependent manner, following the pattern of FASN expression. Moreover, we show that FASN expression depends on OGT upon serum stimulation. The level of FASN also correlates with the activation of the PI3K/AKT/mTOR pathway in hepatic cell lines, and in livers of obese mice and in a chronically activated insulin and mTOR signaling mouse model (PTEN-null mice). These results indicate that FASN is under a dual control of O-GlcNAcylation and mTOR pathways. In turn, blocking FASN with the small-molecule inhibitor C75 reduces both OGT and O-GlcNAcylation levels, and mTOR activation, highlighting a novel reciprocal regulation between these actors. In addition to the role of O-GlcNAcylation in tumorigenesis, our findings shed new light on how aberrant activity of FASN and mTOR signaling may promote the emergence of hepatic tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Ácido Graxo Sintase Tipo I/metabolismo , Neoplasias Hepáticas/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Ácido Graxo Sintase Tipo I/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , N-Acetilglucosaminiltransferases/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Glycoconj J ; 37(4): 499-509, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32367480

RESUMO

The surface of the spermatozoa is coated with glycoproteins the redistribution of which during in vitro capacitation plays a key role in the subsequent fertilization process. Lipid rafts are membrane microdomains involved in signal transduction through receptors and include or recruit specific types of proteins and glycoproteins. Few studies have focused on identifying glycoproteins resident in the lipid rafts of spermatozoa. Proteins associated with lipid rafts modify their localization during capacitation. The objective of the study was to identify the glycoproteins associated with lipid rafts of capacitated boar spermatozoa through a lectin-binding assay coupled to mass spectrometry approach. From the proteomic profiles generated by the raft proteins extractions, we observed that after capacitation the intensity of some bands increased while that of others decreased. To determine whether the proteins obtained from lipid rafts are glycosylated, lectin blot assays were performed. Protein bands with a good resolution and showing significant glycosylation modifications after capacitation were analyzed by mass spectrometry. The bands of interest had an apparent molecular weight of 64, 45, 36, 34, 24, 18 and 15 kDa. We sequenced the 7 bands and 20 known or potential glycoproteins were identified. According to us, for ten of them this is the first time that their association with sperm lipid rafts is described (ADAM5, SPMI, SPACA1, Seminal plasma protein pB1, PSP-I, MFGE8, tACE, PGK2, SUCLA2, MDH1). Moreover, LYDP4, SPAM-1, HSP60, ZPBP1, AK1 were previously reported in lipid rafts of mouse and human spermatozoa but not in boar spermatozoa. We also found and confirmed the presence of ACR, ACRBP, AWN, AQN3 and PRDX5 in lipid rafts of boar spermatozoa. This paper provides an overview of the glycosylation pattern in lipid rafts of boar spermatozoa before and after capacitation. Further glycomic analysis is needed to determine the type and the variation of glycan chains of the lipid rafts glycoproteins on the surface of spermatozoa during capacitation and acrosome reaction.


Assuntos
Glicoproteínas/metabolismo , Microdomínios da Membrana/química , Espermatozoides/química , Animais , Fracionamento Químico , Glicoproteínas/análise , Glicoproteínas/isolamento & purificação , Lectinas/metabolismo , Masculino , Espectrometria de Massas , Microdomínios da Membrana/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Suínos
8.
Proteomics ; 19(21-22): e1800452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373757

RESUMO

Colorectal cancer (CRC) affects both women and men living in societies with a high sedentary lifestyle. Amongst the phenotypic changes exhibited by tumor cells, a wide range of glycosylation has been reported for colon cancer-derived cell lines and CRC tissues. These aberrant modifications affect different aspects of glycosylation, including an increase in core fucosylation and GlcNAc branching on N-glycans, alteration of O-glycans, upregulated sialylation, and O-GlcNAcylation. Although O-GlcNAcylation and complex glycosylations differ in many aspects, sparse evidences report on the interference of O-GlcNAcylation with complex glycosylation. Nevertheless, this relationship is still a matter of debate. Combining different approaches on three human colon cell lines (HT29, HCT116 and CCD841CoN), it is herein reported that silencing O-GlcNAc transferase (OGT, the sole enzyme driving O-GlcNAcylation), only slightly affects overall N- and O-glycosylation patterns. Interestingly, silencing of OGT in HT29 cells upregulates E-cadherin (a major actor of epithelial-to-mesenchymal transition) and changes its glycosylation. On the other hand, OGT silencing perturbs biosynthesis of glycosphingolipids resulting in a decrease in gangliosides and an increase in globosides. Together, these results provide novel insights regarding the selective regulation of complex glycosylations by O-GlcNAcylation in colon cancer cells.


Assuntos
Caderinas/genética , Neoplasias Colorretais/genética , N-Acetilglucosaminiltransferases/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Glicosilação , Células HCT116 , Células HT29 , Humanos , Polissacarídeos/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-31139149

RESUMO

The dynamic O-linked-N-acetylglucosamine posttranslational modification of nucleocytoplasmic proteins has emerged as a key regulator of diverse cellular processes including several hallmarks of cancer. However, the role played by this modification in the establishment of CSC phenotype has been poorly studied so far and remains unclear. In this study we confirmed the previous reports showing that colon cancer cells exhibit higher O-GlcNAc basal levels than non-malignant cells, and investigated the role played by O-GlcNAcylation in the regulation of CSC phenotype. We found that the modification of O-GlcNAcylation levels by pharmacological inhibition of the O-GlcNAc-transferase enzyme that adds O-GlcNAc (OGT), but not of the enzyme that removes it (OGA), increased the expression of all stem cell markers tested in our colon malignant cell lines, and induced the appearance of a double positive (CD44+/CD133+) small stem cell-like subpopulation (which corresponded to 1-10%) that displayed very aggressive malignant phenotype such as increased clonogenicity and spheroid formation abilities in 3D culture. We reasoned that OGT inhibition would mimic in the tumor the presence of severe nutritional stress, and indeed, we demonstrated that nutritional stress reproduced in colon cancer cells the effects obtained with OGT inhibition. Thus, our data strongly suggests that stemness is regulated by HBP/O-GlcNAcylation nutrient sensing pathway, and that O-GlcNAc nutrient sensor represents an important survival mechanism in cancer cells under nutritional stressful conditions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30853938

RESUMO

Cyclin D1 is the regulatory partner of the cyclin-dependent kinases (CDKs) CDK4 or CDK6. Once associated and activated, the cyclin D1/CDK complexes drive the cell cycle entry and G1 phase progression in response to extracellular signals. To ensure their timely and accurate activation during cell cycle progression, cyclin D1 turnover is finely controlled by phosphorylation and ubiquitination. Here we show that the dynamic and reversible O-linked ß-N-Acetyl-glucosaminylation (O-GlcNAcylation) regulates also cyclin D1 half-life. High O-GlcNAc levels increase the stability of cyclin D1, while reduction of O-GlcNAcylation strongly decreases it. Moreover, elevation of O-GlcNAc levels through O-GlcNAcase (OGA) inhibition significantly slows down the ubiquitination of cyclin D1. Finally, biochemical and cell imaging experiments in human cancer cells reveal that the O-GlcNAc transferase (OGT) binds to and glycosylates cyclin D1. We conclude that O-GlcNAcylation promotes the stability of cyclin D1 through modulating its ubiquitination.

11.
Molecules ; 23(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400201

RESUMO

Unlike complex glycosylations, O-GlcNAcylation consists of the addition of a single N-acetylglucosamine unit to serine and threonine residues of target proteins, and is confined within the nucleocytoplasmic and mitochondrial compartments. Nevertheless, a number of clues tend to show that O-GlcNAcylation is a pivotal regulatory element of its complex counterparts. In this perspective, we gather the evidence reported to date regarding this connection. We propose different levels of regulation that encompass the competition for the nucleotide sugar UDP-GlcNAc, and that control the wide class of glycosylation enzymes via their expression, catalytic activity, and trafficking. We sought to better envision that nutrient fluxes control the elaboration of glycans, not only at the level of their structure composition, but also through sweet regulating actors.


Assuntos
Glicosilação , Proteínas/metabolismo , Acetilglucosamina/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteólise , Transdução de Sinais , Açúcares/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-30356686

RESUMO

The hexosamine biosynthetic pathway (HBP) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway are considered as nutrient sensors that regulate several essential biological processes. The hexosamine biosynthetic pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the substrate for O-GlcNAc transferase (OGT), the enzyme that O-GlcNAcylates proteins on serine (Ser) and threonine (Thr) residues. O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) and phosphorylation are highly dynamic post-translational modifications occurring at the same or adjacent sites that regulate folding, stability, subcellular localization, partner interaction, or activity of target proteins. Here we review recent evidence of a cross-regulation of PI3K/AKT/mTOR signaling pathway and protein O-GlcNAcylation. Furthermore, we discuss their co-dysregulation in pathological conditions, e.g., cancer, type-2 diabetes (T2D), and cardiovascular, and neurodegenerative diseases.

13.
Cell Mol Life Sci ; 75(23): 4321-4339, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30069701

RESUMO

O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular division. We previously reported the O-GlcNAcylation of the minichromosome maintenance proteins MCM2, MCM3, MCM6 and MCM7. These proteins belong to the MCM2-7 complex which is crucial for the initiation of DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2-7 are O-GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilizes MCM2/6 and MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2-7 complex and O-GlcNAcylation homeostasis might regulate MCM2-7 complex by regulating the chromatin loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.


Assuntos
Cromatina/genética , Inativação Gênica , Proteínas de Manutenção de Minicromossomo/genética , N-Acetilglucosaminiltransferases/genética , Western Blotting , Linhagem Celular Tumoral , Cromatina/metabolismo , Glicosilação , Células HEK293 , Humanos , Células MCF-7 , Proteínas de Manutenção de Minicromossomo/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
14.
Sci Rep ; 7(1): 14087, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29075020

RESUMO

Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors. Using an unbiased genome-wide approach, we identified and characterized a novel long intergenic non-coding RNA (lincRNA) strongly induced during adipocyte differentiation. This lincRNA favors adipocyte differentiation and coactivates the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARγ) through interaction with the paraspeckle component and hnRNP-like RNA binding protein 14 (RBM14/NCoAA), and was therefore called PPARγ-activator RBM14-associated lncRNA (Paral1). Paral1 expression is restricted to adipocytes and decreased in humans with increasing body mass index. A decreased expression was also observed in diet-induced or genetic mouse models of obesity and this down-regulation was mimicked in vitro by TNF treatment. In conclusion, we have identified a novel component of the adipogenic transcriptional regulatory network defining the lincRNA Paral1 as an obesity-sensitive regulator of adipocyte differentiation and function.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , PPAR gama/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Adulto , Animais , Índice de Massa Corporal , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , Transcrição Gênica
15.
Biochem Soc Trans ; 45(2): 323-338, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408473

RESUMO

Post-translational modifications of histones and the dynamic DNA methylation cycle are finely regulated by a myriad of chromatin-binding factors and chromatin-modifying enzymes. Epigenetic modifications ensure local changes in the architecture of chromatin, thus controlling in fine the accessibility of the machinery of transcription, replication or DNA repair to the chromatin. Over the past decade, the nutrient-sensor enzyme O-GlcNAc transferase (OGT) has emerged as a modulator of chromatin remodeling. In mammals, OGT acts either directly through dynamic and reversible O-GlcNAcylation of histones and chromatin effectors, or in an indirect manner through its recruitment into chromatin-bound multiprotein complexes. In particular, there is an increasing amount of evidence of a cross-talk between OGT and the DNA dioxygenase ten-eleven translocation proteins that catalyze active DNA demethylation. Conversely, the stability of OGT itself can be controlled by the histone lysine-specific demethylase 2 (LSD2). Finally, a few studies have explored the role of O-GlcNAcase (OGA) in chromatin remodeling. In this review, we summarize the recent findings on the link between OGT, OGA and chromatin regulators in mammalian cellular models, and discuss their relevance in physiological and pathological conditions.


Assuntos
Montagem e Desmontagem da Cromatina , Mamíferos/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Acilação , Animais , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Mamíferos/genética , Processamento de Proteína Pós-Traducional
16.
PLoS One ; 10(6): e0129965, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090800

RESUMO

Delta-lactoferrin is a transcription factor, the expression of which is downregulated or silenced in case of breast cancer. It possesses antitumoral activities and when it is re-introduced in mammary epithelial cancer cell lines, provokes antiproliferative effects. It is posttranslationally modified and our earlier investigations showed that the O-GlcNAcylation/phosphorylation interplay plays a major role in the regulation of both its stability and transcriptional activity. Here, we report the covalent modification of delta-lactoferrin with the small ubiquitin-like modifier SUMO-1. Mutational and reporter gene analyses identified five different lysine residues at K13, K308, K361, K379 and K391 as SUMO acceptor sites. The SUMOylation deficient M5S mutant displayed enhanced transactivation capacity on a delta-lactoferrin responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of delta-lactoferrin. K13, K308 and K379 are the main SUMO sites and among them, K308, which is located in a SUMOylation consensus motif of the NDSM-like type, is a key SUMO site involved in repression of delta-lactoferrin transcriptional activity. K13 and K379 are both targeted by other posttranslational modifications. We demonstrated that K13 is the main acetylation site and that favoring acetylation at K13 reduced SUMOylation and increased delta-lactoferrin transcriptional activity. K379, which is either ubiquitinated or SUMOylated, is a pivotal site for the control of delta-lactoferrin stability. We showed that SUMOylation competes with ubiquitination and protects delta-lactoferrin from degradation by positively regulating its stability. Collectively, our results indicate that multi-SUMOylation occurs on delta-lactoferrin to repress its transcriptional activity. Reciprocal occupancy of K13 by either SUMO-1 or an acetyl group may contribute to the establishment of finely regulated mechanisms to control delta-lactoferrin transcriptional activity. Moreover, competition between SUMOylation and ubiquitination at K379 coordinately regulates the stability of delta-lactoferrin toward proteolysis. Therefore SUMOylation of delta-lactoferrin is a novel mechanism controlling both its activity and stability.


Assuntos
Lactoferrina/genética , Lactoferrina/metabolismo , Sumoilação , Ativação Transcricional , Acetilação , Motivos de Aminoácidos , Linhagem Celular , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Lactoferrina/química , Mutação , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Fatores de Transcrição , Ubiquitinação
17.
Proteomics ; 15(5-6): 1039-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25429863

RESUMO

O-GlcNAcylation (O-linked beta-N-acetylglucosaminylation) is a widespread PTM confined within the nuclear, the cytosolic, and the mitochondrial compartments of eukaryotes. Recently, O-GlcNAcylation has been also detected in the close vicinity of plasma membranes particularly in lipid microdomains. The detection of this PTM can be easily done if appropriate controls and precautions are taken using a wide variety of tools including lectins, antibodies, or click-chemistry-based methods. In contrast, the identification of the proteins bearing O-GlcNAc moieties and the localization of the precise sites of O-GlcNAcylation remain challenging. This is due to the lability of the glycosidic bond between hydroxyl group of serine or threonine and N-acetylglucosamine using conventional fragmentation techniques such as CID. To tentatively overcome this technical limitation, electron-capture dissociation, or electron-transfer dissociation MS/MS are now used. Thanks to these breakthroughs, a large number of O-GlcNAc sites have been identified to date but these methodologies remain far from being used in routine.


Assuntos
Acetilglucosamina , Glicoproteínas , Proteômica/métodos , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animais , Linhagem Celular , Glicoproteínas/análise , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Ratos , Espectrometria de Massas em Tandem/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-25538681

RESUMO

The diversity of olfactory binding proteins (OBPs) is a key point to understand their role in molecular olfaction. Since only few different sequences were characterized in each mammalian species, they have been considered as passive carriers of odors and pheromones. We have explored the soluble proteome of pig nasal mucus, taking benefit of the powerful tools of proteomics. Combining two-dimensional electrophoresis, mass spectrometry, and western-blot with specific antibodies, our analyses revealed for the first time that the pig nasal mucus is mainly composed of secreted OBP isoforms, some of them being potentially modified by O-GlcNAcylation. An ortholog gene of the glycosyltransferase responsible of the O-GlcNAc linking on extracellular proteins in Drosophila and Mouse (EOGT) was amplified from tissues of pigs of different ages and sex. The sequence was used in a phylogenetic analysis, which evidenced conservation of EOGT in insect and mammalian models studied in molecular olfaction. Extracellular O-GlcNAcylation of secreted OBPs could finely modulate their binding specificities to odors and pheromones. This constitutes a new mechanism for extracellular signaling by OBPs, suggesting that they act as the first step of odor discrimination.

19.
Plant Cell ; 25(10): 3961-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24163312

RESUMO

Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism.


Assuntos
Evolução Biológica , Cianobactérias/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/genética , Glicogênio/metabolismo , Oryza/enzimologia , Amido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cianobactérias/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Mutagênese , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Methods Mol Biol ; 1022: 147-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23765660

RESUMO

Since the discovery of O-GlcNAc modification (O-GlcNAcylation) 20 years ago, much attention has been given to OGT (O-GlcNAc transferase), the unique enzyme responsible for the nuclear and cytosolic O-GlcNAcylation processes. This review focuses on protocols that are routinely used to analyze OGT expression and activity. First are detailed techniques using rabbit polyclonal anti-OGT antibodies, namely, Western blot, (co-)immunoprecipitation, and immunofluorescence. We also describe the measurement of OGT activity by using synthetic peptides as acceptors and radiolabeled UDP-GlcNAc. Finally, a sensitive HPAEC-based technique to measure the cellular content of UDP-GlcNAc, the donor substrate of OGT, is described in detail.


Assuntos
Acetilglucosamina/análogos & derivados , Ensaios Enzimáticos/métodos , N-Acetilglucosaminiltransferases/análise , N-Acetilglucosaminiltransferases/metabolismo , Difosfato de Uridina/análogos & derivados , Acetilglucosamina/metabolismo , Animais , Anticorpos/análise , Western Blotting/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Imunofluorescência/métodos , Humanos , Imunoprecipitação/métodos , Coloração pela Prata/métodos , Difosfato de Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...